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The purpose of this note is to establish a link between recent results on asymptotics
for classical orthogonal polynomials and random matrix theory. Roughly speaking it
is demonstrated that the ith eigenvalue of a Wishart matrix W(1,, s) is close to the ith
zero of an appropriately scaled Laguerre polynomial, when

lim n/s=ye€0,00).

n,s—00

As a by-product we obtain an elemantary proof of the Marcenko—Pastur and the
semicircle law without relying on combinatorical arguments. © 2002 Elsevier Science
(USA)
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1. INTRODUCTION

The study of sample covariance matrices is important in multivariate
statistics and since the pioneering work of Mar¢enko and Pastur [14] much
effort has been devoted to this subject (see, e.g. [2,3,4,12,15,17] among
many others). In this note we present a new approach for the derivation of
the asymptotic spectral distribution of a Wishart matrix W([,,s), when the
parameters n and s both converge to infinity at appropriate rates. This
method relies on a close connection between the eigenvalues of the Wishart
matrix and the zeros of classical orthogonal polynomials. To be precise, let
V, € R"™ denote a random matrix with i.i.d. standard normally distributed
entries, define
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as the sample covariance matrix and let 4; </, < - - - </, denote the ordered
eigenvalues of the matrix M, where the double index has been omitted for
the sake of simplicity; i.e. 4; = /IE"). It is well known that the joint density of
the eigenvalues is proportional to the function

n

n
II vi-al[[a""e”
i=1

I<i<j<n

and a typical vector of ordered eigenvalues should be close to the
mode of this density. By classical results of Stieltjes (see, e.g. [16]) the
above density becomes maximal for the zeros of the Laguerre polynomial.
The asymptotic properties of these polynomials have been recently
investigated independently from the random matrix literature in the context
of approximation theory. We refer to [5,10] for some results on strong
asymptotics for Laguerre polynomials with varying coefficients and to
[7,9,13] for recent results on the asymptotic zero distribution of these
polynomials.

It is the purpose of the present paper to provide a link between the results
in random matrix theory and the theory of orthogonal polynomials. To this
end we derive an almost sure approximation of the eigenvalues of the
Wishart matrix M, defined in (1.1) by the zeros of appropriately scaled
generalized Laguerre polynomials, when

lim n/s=yel0,00]. (1.2)

n,§—00

This generalizes recent work of Silverstein [15], who established almost
sure convergence of the smallest eigenvalue of the Wishart matrix W (I, s),
when

lim n/s=ye€(0,1).

n,s—0o0

As a by-product we obtain a simple proof of the Marcenko—Pastur law for
the empirical spectral distribution function

Far(x) = %#{i |7y <x} (1.3)

(note that this function has already been appropriately standardized) by
using recent results on weak asymptotics for classical orthogonal
polynomials. Additionally, we provide a new proof of the classical semicircle
law when n/s — 0.
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2. EIGENVALUES OF WISHART MATRICES AND ZEROS OF
LAGUERRE POLYNOMIALS

Throughout this paper let for k =0,1,... ,nL;(“”)(x) denote the kth
generalized Laguerre polynomial orthogonal with respect to the weight
function x* exp(—x)/(p~)(x). We note that the orthogonalizing measure is
varying with the degree n and that we are interested in a comparison of the
roots x;<---<x, of appropriately scaled versions of the polynomial
Lg,“”)(x) with the ordered eigenvalues 1} <A, < - -+ </, of the matrix M, (or
an appropriately scaled version) defined in (1.1). The scaling of the
polynomial and the Wishart matrix depends on the limit y in (1.2) and we
use the roots of the polynomial

LglsfnJrl)(sx)

in the case y € (0,00), the zeros of the polynomial

LY (2\/nsx + s + n)

in the case y = 0 and the roots of the polynomial

LY (2y/nsx + n)

in the case y=o00 for a comparison. The scaling of the Laguerre
polynomials is motivated by weak asymptotic properties of their zeros
(see Theorem 2.4), which were recently obtained by Gawronski [10],
Bosbach and Gawronski [5], Faldey and Gawronski [9], Dette and Studden
[7], Kuijlaars and Van Assche [13]. Throughout this paper I; denotes the
k x k identity matrix. The main result of this paper is the following.
THEOREM 2.1. (a) Let 2, < --- <4, denote the ordered eigenvalues of the
sample covariance matrix M defined in (1.1) and x; < --- <Xx, denote the
zeros of the Laguerre polynomial Lﬁf_”H)(sx). If ns— o0, nfs—ye
(0,00), then
1 n
im0

Jj=1

)‘j — Xj|2 =0 a.s.

(b) Let Ay <---<A, denote the ordered eigenvalues of the sample
covariance matrix

1
N,=——{V, VT —sI, 2.1
2\/ﬁ{ s — sk} (2.1)

and x1<---<Xx, denote the zeros of the Laguerre polynomial
LY (2+/nsx + s + n).
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If n,s — oo, n/s — 0, then

. 1
Jim >

J=1

Aj— xj|2 =0 a.s.

(c) Let M <--- </, denote the ordered eigenvalues of the sample
covariance matrix

1
Py = 2./ns {(vovl —nl,} (2.2)
and —5\/ S=Xx] = —xn s <Xp_si1 < -+ <X, denote the zeros of the

Laguerre polynomlal L™ (2\/nsx + n). Ifn s — 00, n/s — oo, then
1 n
lim — Z 14— x;|* = lim = Z i—x=0 as.

noeo noeo n Jj=n—s+1

Proof. (a) For a proof of part (a) we assume at first that y € (0, 1), that
is s>n for sufficiently large n. According to [15, p. 1366] the matrix M; is
orthogonally similar to a triangular matrix 4 = (a;,)", 1 With entries

L1 :
ai=i__(Y2 1+1+X32 z+1) i=1,...,n,

. 1 .
Qi1 :;Xs—i+]Yn—[7 i=1,...,n—1,
. 1 .
ai+l,i:?X57i+lYn7ia l:1,...,n—1,

where Y? =0, X7 ~y?, Y? ~ 7 are independent chi-square distributed
random variables (X;>0, Y;>0). Therefore it is easy to see that the matrix

M has the same eigenvalues as the matrix 4 = (a;;);;_, defined by

1
~ 2 2 .
Aij = 0n-iy1pn-i+1 = (Y + X0, i=1,...,n,

1
iyl = Anip—it] = EXr—n-&-i-&-l Y;, i=1,...,n—1,
N 1 .
Qi1 = Gpip1pn—i = EXHMH Y;, i=1,...,n—1L

Now consider the kth Laguerre polynomial
s—n+1)
L/ (x)

]

orthogonal with respect to the weight function x*~"*! exp(—x)(g ) (x) With
leading coefficient 1. According to [6] we have the recursion (a, =5 —n+ 1)

EY0(x) = (x = {2k + 1+ o DEY (%) — k(k + )Y () (23)
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with initial conditions lA,(i)(x) =0, f,gx">(x) = 1. It is now straightforward
to see that the zeros of the polynomial l:i“") (sx) are precisely the eigenvalues
of the triangular matrix B = (b;;);;, where

1
blﬁ,i:E(O‘n“FZi_l), l.zl,...ﬂ’l7

1

bi,i+1:;m, i=1,...,n—1,
1 — .

biHJZE i(i+ o), i=1,...,n—1.

This follows by factorizing (—1)", ()" in the determinant equation

det(B—AI) =0,
and identifying recursion (2.3) for the polynomial ﬁLa">(si).
Now the discussion following Lemma 2.3 in [1] yields for the distance
between the eigenvalues of the matrix M and the zeros of the polynomial

LA(S—n—O—l) (SX)

n

1 n 5 2 n—1 )
= Z (aii —biy) +E (@iiv1 —biz1)”,  (2.4)

where the first equality follows from the symmetry of the matrices 4 and B.
The two terms in (2.4) are estimated separately. For the first term we have
with some finite constant ¢ > 0 (observing Y? = 0)

n n—1 2 N 2 n By 2
Y —1 n\ 2 X.7 s n—i
¢ E (a;; — bi) < E ( ls ) +(E) + g ( s—ni - >
i=1 =1 -

i=1

2
< 2nM? + (%) ,
where the random variable M, is defined by

2

i

X7
N

,  max

1<i<n—1 s—(n—1)<i<s

M, = max{ max
s

}. (2.5)

From [15, p. 1367] it follows that M,, — 0 a.s. and we obtain

rll Z (ai,i — b,"i)z — 0 a.s. (26)
i=1
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For the remaining term in (2.4) we have

3 n+i+1 Y \/ l + OCn

n—1 n—1

1
- E (ai,iJrl b;, z+1
n

i=1 i=1

Fﬂ_

e . 12 412
Sli Xx2—n+i+l_(s_”+l+1) Y7 —i /
I’lI:l S
/1+S—I’l+1‘Y2 i
Xs n+i+1 ( I’l+l+1)

1/2}2

where the random variable M), is defined in (2.5) and we have used the
inequality

i
!
s

< (M, +2VM,)* -0  as.,

s

lab — ab|< |6_12 _az‘l/z‘bz _ b2|1/2
+ [blla® — @' + |alb® — 5|

for nonnegative a, b, a, b (see [15]). Observing (2.4) assertion (a) of Theorem
2.1 follows in the case y € (0, 1).

In the case y > 1 (which means n > s for sufficiently large #) the result is
established by interchanging the roles of s and » and from a representation
for generalized Laguerre polynomials with negative parameter. To be
precise, we note that in this case the matrix M, is orthogonally similar to an
n x n matrix A with principal s x s block containing the (s-dimensional)
rows

1
(X2 + Yz s YS*IXH71707"'70)7

1
E ( Ys—i-H AXn—i-H 5 Xn it

VY2 Y X, ,0,...,0) (i=2,...,s—1)
and

1
E(O 0 Yl n— 3+17)(n27s+1)’

where all other entries in the matrix 4 are 0 and the meaning of the random
variables X;, Y;, X,.z, Yi2 is the same as in the previous paragraph. Observing
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the identity

LY () (2.7)

(see [16, Sect. 5.2)) the assertion now follows by similar arguments as given
for the case y € (0, 1).

The remaining case y =1 is proved by considering two subsequences
corresponding to the cases s>n and s<n, respectively.

(b) By the same argument as given in the proof of part (a) the eigenvalues
of the matrix N, defined in (2.1) are obtained as the eigenvalues of the
tridiagonal matrix 4 defined by

aij i

2 2
:W(Yi + X i —5),

1
Aijr1 =diyli = 57— X nyiv1 Y.
’ 2./sn

Now consider the Laguerre polynomials with leading coefficient 1 and
parameter o, = s and define polynomials

pr(x) = lt,@(%/ﬁx +5+n).

The zeros of the polynomial p,(x) are given by the eigenvalues of the matrix
B defined by

1
bii=——=(y+2i—1—-n—s5)=—=(2i—1-—n), i=1,...,n,
' 2+/ns

1 — 1 — .
biin :b[+]j:m\/l(l+an) :m\/l(l+s), i=1,....n—1,

where o, = s. The assertion now follows by similar arguments as given in the
proof of part (a).

(c) The asymptotic properties in the case y = oo follow from a
combination of the arguments given in the proof of part (a) for the case
y>1 and the proof of part (b). The matrix P; defined in (2.2) is
orthogonally similar to an n x n matrix 4 with principal s x s block
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containing the (s-dimensional) rows

1
2\/1% (X;f + }/371 —n, Ys—an—l707 s ao)a
2\/—'( s— 1+]Xn l+17A/;7271'+1 + YSZH. - n Yx,,’X,,,,‘,O,...,O), (l = 2,...,5‘* ])
and
1 2
2\/%( ,0, Y1 X, s+1aXn,S+1 _”1)7

where all other entries in the matrix 4 are 0 and the meaning of the random
variables X;, Y;, X?, Y7 is the same as in the proof of part (a). From (2.7) we
have for some constant ¢#0

M (2y/nsx +n) = ¢(2v/nsx +n)" LI (2y/nsx + n),
where the s positive zeros of the polynomial on the right-hand side are
obtained as the eigenvalues of the tridiagonal matrix B with elements

bij=——=2i—1-y), i=1,...,s,

2\/713

1
bi,i+1:bi+1,i:m i(i+n—s), i=1,...,5s— 1.
The assertion now follows by similar arguments as given in the proof of
part (a). 1

The following result is an immediate consequence of Theorem 2.1 and
recent results on the location of the zeros of classical orthogonal
polynomials.

COROLLARY 2.2. (a) Let 21 < --- <Ay, denote the ordered eigenvalues of
the sample covariance matrix M d?ﬁned in (1.1) and x; < - -+ <Xx,, denote the
zeros of the Laguerre polynomial L, "H)( x). If di <dr < - - <d,, denote the
ordered differences |A; — x;| and n,s — oo, n/s — y € (0, oo)7 then
lim dLmJ =0 a.s.

n,s—0o0

n/s—ye(0,00)

for all t€(0,1). In particular we obtain for the smallest and largest
eigenvalue of the matrix My and for the smallest and largest zero of the
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polynomial L™ (sx)
. . 2
n}slgnoo x| = n}Sanoo =1-9) a.s.
n/s—ye(0,1] n/s—ye(0,1]
. . 2
n.,llenoo Xn = n,lslgﬂloc A = (1+ \/j}) a5
n/s—ye(0,00) n/s—ye(0,00)

and in the case y>=1

. L ) _ 2
nlvlgloo Xn—s+1 = n,llenoc An—st+1 = (1 - \/')_}) a.s.
n/s—ye(l,00) n/s—y€(l,00)

(b) Let M< - </, denote the ordered eigenvalues of the sample
covariance matrix Ny deﬁned in (2.1) and x; < --- <Xx, denote the zeros of
the Laguerre polynomial L >(2\/—sx +s+n). Ifd1 dr < -+ <d, denote the
ordered differences |A; — x;| and n,s — oo, n/s — 0, then

nlslinx djp =0 a.s.

n/s—0

Sorallt € (0,1). In particular we obtain for the largest and smallest eigenvalue
of the matrix Ny and for the smallest and largest zero of the polynomial

(2\/_sx +s+n)

Iim x| = 11m A1=1 a.s.
n,s—oo

n/5—0 Vl/SHO

Iim x, = 11m A= —1 a.s.
n,s—oo
n/s—0 n/SHO

(¢) Let M<--- </, denote the ordered eigenvalues of the sample
covariance matrix Py deﬁned ln (2.2) and x) < --- <x, denote the zeros of
the Laguerre polynomial LY™ (2/nsx +n). If 0 =dy = -+ = dy_y <dy_ys1
<dr< -+ <d, denote the ordered differences |A; — x| and n,s — oo, n/s —
o0, then

Iim d,,; = a.s.
n,s—o0 Ll’l[

n/s—o0

for all t € (0,1). In particular we obtain for the largest and (n — s+ 1)th
smallest eigenvalue of the matrix Py and for the (n — s+ 1)th smallest and
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largest zero of the polynomial L™ (2\/nsx + n)

lim x, 0= lim Z, ¢ =-—1 a.s.
ns—co P s+1 ns—soo M s+1
n/s—oo n/s—o00
Iim x,= lim A,=1 a.s.
n,5—00 n,5—00
n/s—oo n/s—o0

Proof. The first part is an immediate consequence of Theorem 2.1. The
assertion regarding the largest and smallest eigenvalue follows similarly to
the proof of Theorem 2.1 by an application of the Theorem of GerSgorin
[11] (see [15]). The results for the largest and smallest zero of the Laguerre
polynomial can be obtained from Theorem 4.4 in [7] and formula (2.7). 1

The asymptotic properties of the largest and smallest eigenvalue in part
(a) of Corollary 2.2 were already observed by Silverstein [15], but we did not
find the result for sample covariance matrices for the case n/s — 0 or n/s —
oo in the literature (for a proof of the analogue for n/s — 0 in the case of
Wigner matrices see [3]). The following example illustrates the quality of
approximation in Corollary 2.2.

ExamPLE 2.3. Consider the case s = 107 and note that for finite samples
the limits n/s — y € (0,00) and n/s — 0 cannot be distinguished. Therefore
both approximations of parts (a) and (b) in Theorem 2.1 could be used in
principle. For the sake of brevity we use only case (b). Table I shows the

TABLE I
The 10 smallest zeros of the scaled Laguerre polynomials p,(x) defined in (2.8) and the n
smallest eigenvalues of the standardized Wishart matrix Ny, defined in (2.9) for various values

of n
n 10 15 20
2 X 4 X 4j X
—0.74099 —0.72672 —0.76857 —0.76658 —0.78275 —0.78866
—0.57733 —0.57065 —0.64970 —0.65404 —0.68759 —0.69867
—0.43048 —0.42409 —0.54791 —0.55201 —0.60781 —0.61862
—0.28494 —0.27741 —0.45075 —0.45334 —0.53318 —0.54254
—0.13478 —0.12609 —0.35486 —0.35519 —0.46089 —0.46816
0.02480 0.03340 —0.25757 —0.25592 —0.38926 —0.39427
0.19766 0.20499 —0.15823 —0.15433 —0.31717 —0.32007
0.39190 0.39425 —0.05522 —0.04934 —0.24446 —0.24499
0.62150 0.61121 0.05261 0.06015 —0.17025 —0.16852

0.93142 0.88111 0.16661 0.17546 —0.09418 —0.09021
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7eros Xxi, ..., x, of the Laguerre polynomial
pa(x) = L' (2nv/10x + 11n) (2.8)
and the eigenvalues 4y, ..., 4, of the standardized matrix
Niow = 1 (Vion Vi, — 10n1,) (2.9)
2nv10

for n =10,15,20. These eigenvalues have been obtained by simulations
based on 100.000 runs. For the sake of brevity only the ten smallest
eigenvalues and zeros are displayed.

We will use Theorem 2.1 for an alternative proof of the famous
Marcéenko—Pastur and semicircle law in the normal case using recent results
for the asymptotic zero distribution of classical orthogonal polynomials.
Conversely the arguments given in this paper show that the Marcenko—
Pastur and semicircle law could also be used to provide an alternative proof
for the asymptotic zero distribution of the Laguerre polynomials with
varying integer-valued parameters. For the sake of completeness we recall a
result on the asymptotic zero distribution for the zeros of the Laguerre
polynomials with varying (not necessarily integer valued) parameters. A
proof can be found in [7] (see also [8, 9] or [13]). For a real sequence (o)
with elements > —1 let

neN

N (&) = #{x|L*) (x) = 0,x< &} (2.10)

denote the number of zeros of the generalized Laguerre polynomial L,(f”)(x)

less or equal than &, then we have the following result.

THEOREM 2.4 (Dette and Studden [7]).
(a) If lim, .o % = a>0, then

/lrs —
lim 1 — N @) / (r2 = %) dx Sor all & €|

n—oo N

}’1,7’2]7

where rip =2+a=x2y/1+a
(b) If lim,, ., 5 = oo, then

lim 1N“‘“ (\/nani—&—ocn = / V4 —x2dx  for all |¢]<2.

n—oo N

THEOREM 2.5. (Marcenko—Pastur and Semicircle Law).
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(a) If n— o0, n/s — y € (0,00) and Fy, denotes the empirical spectral
distribution function of the matrix M, defined in (1.1), then for all £ € R

Fy (&) — Fu(8)  as., (2.11)

where the distribution function Fy; has density

fux) = L—Wl[ayb](x)’

the quantities a and b are given by a=(1-— \/)7)2, b=(1+ \/J_/)27
respectively, and there is an additional jump of size 1 — 1/y in the case y > 1.

(b) If n/s — 0 and Fy, denotes the empirical spectral distribution function
of the matrix (2.1), then we have for any x € [—1,1]

FN.\-( )—>FN / V1 —2dt a.s. (212)

(Fy,(x) = Lifx>1, Fy(x) = 0if x<l).

(¢) If n,s — 00, n/s — oo and Fp, denotes the empirical distribution
function of the s largest eigenvalues of the matrix Py defined by (2.2), then we
have for any x € [—1,1]

Fp,(x) — Fy(x / V1—28£dt  as. (2.13)

(Fp,(x) = 1ifx>1,Fp(x) = 0if x<1).

Proof. (a) Consider at first the case (a) with y € (0,1]. From [1] and
Theorem 2.1 it follows for the Levy distance L between the distribution
functions Fjs, and Fp that

1 n
L*(Fy, Fg)<- Li—x> =0
(Fu,, Fp) n;‘j X" — a.s

where

Fo(&) = #{x | ) (s0) = 0,x<)

denotes the em irical distribution function of the zeros of the Laguerre
polynomial L, (e (sx) with parameter o, = s —n+ 1. From the first part of
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Theorem 2.4 we therefore have for any ¢ € [ry, 1]
1 (o B
Fu(&) = #{x| L, (n7x) = 0,x<¢)
1 Ne 1 [ (= x)(x — 1)
——N ( _5) / dx,  (2.14)

=00 o X
—y

where 1o = (1+ L 2. Substitution and differentiation yields for the density

1)
of the limiting distribution

2ny X fjay (%),
where
= (1 - \/.)7)2v
= (14 )%

The argument for the case y > 1 follows exactly in the same way using at
first identity (2.7).
(b) Again we obtain from Theorem 2.1

L*(Fy,Fg) —0  as.,

where Fp denotes the empirical distribution function of the roots of the
polynomial L% (2, /figyx + s + n) with o, = s, that is

Fp(& )=—#{x|L<“~ (2y/mox + 5 +n) = 0,x< ¢}

1
:;N(“”>(2\/7Wn§+s+n).

Observing \/— f =o(1) and Example 2.7 in [7] the second part of
Theorem 2.4 now gives

lim Fg(&) = lim 1N (o) (2y/na,é + o)

n—o0o n—oo N

2 v 4 —x2dx == / V1—-122dt
T

whenever |€|< 1, which proves the assertion of Theorem 2.5(b).
(c) This is proved in the same way using identity (2.7). 1



ROOTS OF GENERALIZED LAGUERRE POLYNOMIALS 303

Remark 2.6. We finally note that most of the results on Wishart
matrices hold under more general assumptions (existing fourth moments
and not necessarily normally distributed random variables). A direct
extension of the presented equivalence seems to be difficult, because our
proofs rely heavily on Silverstein’s [15] work, which definitively requires the
assumption of a normal distribution. Research in this direction is planned
for the future.
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